58 research outputs found

    Learning the Optimal Control of Coordinated Eye and Head Movements

    Get PDF
    Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show that the characteristics of coordinated eye and head movements generated by this model match the experimental data in many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated eye and head movements

    Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision

    Get PDF
    To comprehend the principles underlying sensory information processing, it is important to understand how the nervous system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the fly's nervous system changes with temperature and luminance. Although these two environmental variables have a considerable impact on the fly's nervous system, they do not impede the fly to behave suitably over a wide range of conditions. We recorded responses from a motion-sensitive neuron, the H1-cell, to a time-varying stimulus at many different combinations of temperature and luminance. We found that the mean firing rate, but not firing precision, changes with temperature, while both were affected by mean luminance. Because we also found that information rate and coding efficiency are mainly set by the mean firing rate, our results suggest that, in the face of environmental perturbations, the coding efficiency is improved by an increase in the mean firing rate, rather than by an increased firing precision

    Saccadic Eye Movement Abnormalities in Children with Epilepsy

    Get PDF
    Childhood onset epilepsy is associated with disrupted developmental integration of sensorimotor and cognitive functions that contribute to persistent neurobehavioural comorbidities. The role of epilepsy and its treatment on the development of functional integration of motor and cognitive domains is unclear. Oculomotor tasks can probe neurophysiological and neurocognitive mechanisms vulnerable to developmental disruptions by epilepsy-related factors. The study involved 26 patients and 48 typically developing children aged 8–18 years old who performed a prosaccade and an antisaccade task. Analyses compared medicated chronic epilepsy patients and unmedicated controlled epilepsy patients to healthy control children on saccade latency, accuracy and dynamics, errors and correction rate, and express saccades. Patients with medicated chronic epilepsy had impaired and more variable processing speed, reduced accuracy, increased peak velocity and a greater number of inhibitory errors, younger unmedicated patients also showed deficits in error monitoring. Deficits were related to reported behavioural problems in patients. Epilepsy factors were significant predictors of oculomotor functions. An earlier age at onset predicted reduced latency of prosaccades and increased express saccades, and the typical relationship between express saccades and inhibitory errors was absent in chronic patients, indicating a persistent reduction in tonic cortical inhibition and aberrant cortical connectivity. In contrast, onset in later childhood predicted altered antisaccade dynamics indicating disrupted neurotransmission in frontoparietal and oculomotor networks with greater demand on inhibitory control. The observed saccadic abnormalities are consistent with a dysmaturation of subcortical-cortical functional connectivity and aberrant neurotransmission. Eye movements could be used to monitor the impact of epilepsy on neurocognitive development and help assess the risk for poor neurobehavioural outcomes

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    Model of the control of saccades by superior colliculus and cerebellum

    No full text
    Experimental evidence indicates that the superior colliculus (SC) is important but neither necessary nor sufficient to produce accurate saccadic eye movements. Furthermore both clinical and experimental evidence points to the cerebellum as an indispensable component of the saccadic system. Accordingly, we have devised a new model of the saccadic system in which the characteristics of saccades are determined by the cooperation of two pathways, one through the SC and the other through the cerebellum. Both pathways are influenced by feedback information: the feedback determines the decay of activity for collicular neurons and the timing of the activation for cerebellar neurons. We have modeled three types of cells (burst, buildup, and fixation neurons) found in the intermediate layers of the superior colliculus. We propose that, from the point of view of motor execution, the burst neurons and the buildup neurons are not functionally distinct with both providing a directional drive to the brain stem circuitry. The fixation neurons determine the onset of the saccade by disfacilitating the omnipause neurons in the brain stem. Excluding noise-related variations, the ratio of the horizontal to the vertical components of the collicular drive is fixed throughout the saccade (i.e., its direction is fixed); the duration of the drive is such that it always would produce hypermetric movements. The cerebellum plays three roles: first, it provides an additional directional drive, which improves the acceleration of the eyes. second, it keeps track of the progress of the saccade toward the target; and third, it ends the saccade by choking off the collicular drive. The drive provided by the cerebellum can be adjusted in direction to exert a directional control over the saccadic trajectory. We propose here a control mechanism that incorporates a spatial displacement integrator in the cerebellum; under such conditions, we show that a partial directional control arises automatically. Our scheme preserves the advantages of several previous models of the saccadic system (e.g., the lack of a spatial-to-temporal transformation between the SC and the brain stem: the use of efference copy feedback to control the saccade), without incurring many of their drawbacks, and it accounts for a large amount of experimental data

    Distributed model of control of saccades by superior colliculus and cerebellum

    No full text
    We investigate the role that superior colliculus (SC) and cerebellum (CBLM) might play in controlling saccadic eye movements. Even though strong experimental evidence argues for an important role for the CBLM, the most recent models of the saccadic system have relied mostly on the SC for the dynamic control of saccades. In this study, we propose that saccades are controlled by two parallel pathways, one including the SC and the other including the CBLM. In this model, both SC and CBLM provide part of the drive to the saccade. Furthermore, the CBLM receives direct feedback from the brain stem and keeps track of the residual motor error, so that it can issue appropriate commands to compensate for incorrect heading and to end the movement when the target has been foveated. We present here a distributed model that produces realistic saccades and accounts for a great deal of neurophysiological data. Published by Elsevier Science Ltd

    Irregularity distinguishes limb tremor in cervical dystonia from essential tremor.

    No full text
    INTRODUCTION: Patients with cervical dystonia (CD) often have limb tremor that is clinically indistinguishable from essential tremor (ET). Whether a common central mechanism underlies the tremor in these conditions is unknown. We addressed this issue by quantifying limb tremor in 19 patients with CD and 35 patients with ET. METHOD: Postural, resting and kinetic tremors were quantified (amplitude, mean frequency and regularity) using a three-axis accelerometer. RESULTS: The amplitude of limb tremor in ET was significantly higher than in CD, but the mean frequency was not significantly different between the groups. The cycle-to-cycle variability of the frequency (ie the tremor irregularity), however, was significantly greater (approximately 50%) in CD. Analysis of covariance excluded the possibility that the increased irregularity was related to the smaller amplitude of tremor in CD (ANCOVA: p = 0.007, F = 5.31). DISCUSSION: We propose that tremor in CD arises from oscillators with different dynamic characteristics, producing a more irregular output, whereas the tremor in ET arises from oscillators with similar dynamic characteristics, producing a more regular output. We suggest that variability of tremor is an important parameter for distinguishing tremor mechanisms. It is possible that changes in membrane kinetics based on the pattern of ion channel expression underlie the differences in tremor in some diseases
    corecore